
1. Appl. Math Mechs Vol. 56, No. 5, pp. 783-?8?,1992 0021-8928’92 $24.00+ .OO 
Printed in Great Britain. 0 1993 Pergamon Press Ltd 
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It is shown that the long-term memory effect, observed in composite materials [l, 21, can appear in plates 

and in this case it need not be associated with existence of an inhomogeneous structure. An analysis of the 
problem is carried out using a two-scale asymptotic expansion [3]. 

1. FORMULATION OF THE PROBLEM 

LET us consider the three-dimensional problem in a thin layer S X [-e/2, c/2] of constant thickness E (as e-+0, 
the domain contracts to the two-dimensional area SC R2 which is a plate). We have 

Sij,j=fi in SX [--E/Z,e/2] 

u(x, t) = 0 on as x I--E/~, e/2] 

q3=gf onsurfaces (x’ES, x, =+~/21 

(1.1) 

(1.2) 

u(x.O)=O in Sx [-o/2, e/2] (1.3) 

Here {riiii> is the stress tensor, u is the displacement vector of the plate, regarded as a three-dimensional 
body, and the components of vector x’ = (x1, x2) are coordinates in the plane of the plate. 

We take the governing relations in the form 

=” = Ea@tjklUk.I + =ijkl”k,I) Y (1.4) 

where {Uijk,} is the tensor of the elastic constants, {Tijkl} is the tensor of linear operators (i.e. linear with 
respect to time). For the case of a visco-elastic material we have riikl= bijklaldt. The multiplier l a of (1.4), 
when a = - 1, ensures zero stiffness of the plate in its plane and, when a = -3, it ensures non-zero flexural 
stiffness as E+ 0. 

We will consider the most general case when a = -3 (which also includes, as we shall see, the case a = -1). 
The quantities Uijkl, rijkl (like bijkl, if the material is visco-elastic) are assumed to be bounded uniformly with 
respect to E. 

2. ASYMPTOTIC EXPANSION 

Consider a plate of constant thickness which is fabricated from a homogeneous material. We will use the 
following asymptotic expansion (which is a special case of the expansion given earlier in [3]) 

IJ = “(“)(X’, C) + EJ1)(Xf. yl, C) + 

o,ii=e-30p fx’, Ys, t, + E -2 +x’, y,, C) + . . ; y, =x,/e 
(2.1) 

Oij 

Substituting expansion (2.1) into (1. l), substituting E -‘alay and alax, for the differentiation operators alax, 

(henceforth Greek indices take the values 1,2, and Latin ones take the values 1,2,3), and equating expressions 
of like powers of l , we obtain 

(m+l) 
* i3.3Y I 

+ c$$=o, ln#O 

,3y = alay3, ,CUX = a/ax, (2.2) 
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Averaging Eqs (2.2) over the plate thickness and averaging the same equations, first multiplied by y3, we 
obtain the equations of equilibrium 

(,$3)),oLx=o, (o&2), ,(Yx+gj+gj =o (2.3) 

(O&l) ,(yx + g.: + g; = 0, Mk2’ a ,ax - ( 93 (-‘),+ gp’+ga =0 

Here (.) = jr’$,.dya is the mean value over the plate thickness, (o&p)) are forces, and M&F) = (yaa$p)) are 
the moments of the forces. 

For the plate, but not for the material from which it is fabricated, the governing equations must relate the 
forces and the moments of the forces to the deformation characteristics (when the asymptotic method is used 
they turn out to be the classical deformations in the plane of the plate and the curvatures). 

Substituting expansion (2.1) into the governing equations (2.2) of the material of the plate, replacing the 
differentiation operators and equating the expressions of like power of E, we find 

cl!m’ =~ijkarU~m~~3’ + ~ijk3U~;:4’ + rijkc(~~,‘x3 + rijk3~~3’v4’ 

‘1 

(2.4) 

When m = -3, substitution of expressions (2.4) into (2.2) leads to the problem (ys and tare variables, x’ is a 
parameter, and -yap are deformations in the plane of the plate) 

0\S3],, = 0, o/c3) = 0 when y, = r% (2.5) 

Here 

Substituting (2.1) into (1.3) we obtain the intial conditions 

u(k)(x’, y,,O)=O, k=O,l,2.. (2.7) 

and, in particular, 

“(‘)(X., y,, ,O) = 0 (2.8) 

The solution of problem (2.9, (2.6) and (2.8) gives an expression for u(l) in terms of {u$r$}, {raa}. 
Substituting this expression into (2.6) and integrating the result over the plate thickness, we find the relation 
between the forces and {-yam} (as we will see, {u$i&} do not occur in this relation). 

3. ANALYSIS OF THE GOVERNING RELATIONS. EXTENSION IN THE PLANE OF THE 
PLATE 

Let us represent the solution of problem (2.9, (2.6) and (2.8) as a sum of terms corresponding to 

deformations of the plate in its plane and to its bending, namely u (‘) = II\‘) + I#) where u\‘) is the solution of the 

problem 
u oi3 3y=0, or3=Owhen y, =t% (3.1) 

where 

(1) a:3 =ai3k3” lk.3y + riZk3”:lk),3y + 4i3pa7pa + ri3pava (3.2) 

We will seek the solution of (3. l), (3.2) in the form (bearing in mind that the quantities occurring in (3.1) and 
(3.2) are independent of ys) 

a (1) -U Ik (x’, y,, f) = Vk(t). i.e. u tk 
w, 

“I (X’, y,, t) = Vk(t)y, + ck 

Substituting (3.3) into (3.2) and taking into account the boundary conditions we obtain 

oy3 =ai3k3Vk + ri3k3Vk +ai3flaYflar + ri3pa7pa = 

= (af3k3) ( ” + @i3k3) -I (ai3paTflcr) ] + Vi3k, ) ( V + Wi3k3) -’ u-i3pd rpa) 1 = 0 (3.4) 

where (uiak3) and (rzsk3) are 3 x 3 matrices (numerical and operator matrices), - 1 indicates their inversion (in 

the corresponding sense), V = (VI, Vz, V,) and (Uispa 7/sm)l=r,2,a and (Fiapa ypa)i=i,a,a are vectors. 
In the general case (since Fijkl are time-operators) (3.1) is an operator equation (in the case of a visco-elastic 
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material it is a differential equation) and its solution is given by a resolving operator that is non-linear with 
respect to time. 

Remark. In the special case, when the relations 

(Ui3k3)-‘(U~‘fJpa78a)i=1,2.3 = (ri3k3) -’ (ri3&7Lkdi=1,2,3 

hold (cf. [2]), equality (3.4) is satisfied by the function 

(3.5) 

V= -(~i3k3)~‘(~i3~orT~~)i=l,2,~ (3.6) 

Consider the function u$i) contained in the equality u (l) = u\‘)+u$‘). It is determined by solving problem 
(3.1) with 

(1, (1) (0) (0) a;“s ‘“i3k3uk,3y + ri3k3” k, 3~ +Ui33d 3,ax + ri33a” 3,ax 

The solution of this problem, as has been stated in [2], is the function ui’) = --ysS~&~~This can be verified 
by substitution (taking into account the symmetry of the coefficients aj33a = aib3, ri3h = Tih3). 

For m = -3, substitution of the expressions obtained into (2.4), after integrating the result over the plate 
thickness, yields 

( 0!F3))=(aijk3vk+ rijk3Vk+uijfiar@ + riipa7@) 
11 

(3.7) 

We see that Eqs (3.7), which are the governing equations of the plate, are of the same type as the governing 
equations (2.1) of the material if (3.5) is satisfied. This does not hold in the general case. 

Example. Consider a plate fabricated from a visco-elastic material characterized by the equations 
riikl = biikl&3t, biikr = const. For simplicity, we consider the case of uniaxial extension: yPu = -y226P2S,Z. In this 
case (3.4) takes the form (taking into account that for the case of an isotropic material, which is considered 
here, (ai3k3) and (risks) are diagonal’matrices [4]) 

‘3:s =ui3i3 Vi + ui322Y22 + bi3i3 
a-r22 _ 9 +bi322,,- 

ui233 a 
=Ui3i3(Vi + - ~1s) + bt3i3 z (Vi + 

4233 

ui3i3 
- -YlI) 

4313 
(3.8) 

For isotropic materials, taking account of the relations aiszz = 0 and br322 = 0 for i = 1,2, (3.8) takes the form 
(fori=cu= 1,2) 

43 =Utr33VV+ a3a3 vb, 

and from (3.3) it follows that V, = 0 (a = 1, 2). In the case being considered only the third equation (i = 3) of 
(3.1) thus remains. It reduces to [cf. (3.4)] 

u~~~,(V~ +Ay,,)+b,,,,a(v, +Ay,,)lat=-b,,l,a(B-A)lat 

A =~33~&~3,~. B=b,,,,fb,s=, 

if relations (3.8) are taken into account. 
By (3.3) and (2.8) we have 

v, (0) = 0 

(recall that V3 is a function of the single argument t). The solution of Eqs (3.9) and (3.10) is 

(3.9) 

(3.10) 

1 

V,(t)=A(7*l(t)+yI,(0))+ ; em*+ (r)dr (c=+=), A=B-A (3.11) 
333) 

Substitution of expression (3.11) into (3.7) leads to the following governing relations (for the case 
considered, when only the quantity y22 is non-zero) 

c 
( o’.-~’ ) ‘Ulj33A(-_Y, 1 

il (t) + 72 z (0)) + Uy33 A L e ‘7a7,t(r) dz + 

+ btj33(-A 
w,, 
at (t) + AeCr % (t)) + @ij22Tz 1 (t) + btj22 

ah, 
-_(t4 ar (3.12) 
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On the right-hand side of (3.12) the angle bracket symbols are omitted since the functions contained within 
them do not depend on y3 and for them the mean of a function equals the function itself. 

As is seen, the governing equations of the plate fabricated from a visco-elastic material (which is described by 
the local, with respect to time, governing relations) contain the non-local integral term (which is of the kind 
considered in the theory of hereditary elasticity [4]) and the term dependent on time explicitly (which is of the 
kind considered in the theory of ageing [4]). Let us estimate the magnitude of these terms. The integral term is 
of the order of (the integral of (3.12) is evaluated at &y22/at = 1) 

Ujj33/C-’ (B - A)(SZ” - 1) 

The interval of significant fading by a factor of e of the memory equals 1 l/C 1 for C< 0. For C> 0 the plate has 
a non-decaying memory. The quantities A and B are of the order of the elastic and “viscous” Poisson’s ratios, 
while l/C is of the order of the ratio of the coefficient of viscosity of the material to its Young’s modulus. 

4. ANALYSIS OF THE GOVERNING RELATIONS. BENDING 

By virtue of the above considerations we have 

‘k 
(‘)=u$+uZk (1) - (1) (0) 

- * ,k - Ys&k& 3,ax + uk(x’j (4.1) 

The last term appears because (3.1) is the problem described by variables y3 and t. In a similar manner [3], it 
can be verified that, whenever there is a unique solution of the problem of deforming a plate with the governing 
relations (3.7), this solution is zero, i.e. u, (‘) = 0 (G = 1, 2). As a result, we have 

&‘= (0) -Y,U s,(1X + Ll,(x’), uj’) = Li,(x’) (4.2) 

Substituting expression 4(2) into (2.4) for m = -2 we obtain 

C-2) - 
‘ij 

(2) (0) (2) 
- alJk3u k, 3Y - Y 3aijpau 3,@xpx + aijkauk,aX + rijk3” k 3 . Y - ~ij~d~“(3q),_@x + rijkcxuk,aX (4.3) 

and (2.5) leads to the problem 

0(,;2;y = 0, &2) = 0 for y, = + % (4.4) 

The solution of problem (4.4) can be represented in the form u (*) = u(2) + II&~) + uh2), where u(2) and I@ are 
similar to the functions II{*) and r$) introduce above [but rsa are calculated using U(x’) and not u(‘)(x’)] and u$*) 
is the solution of the problem 

0r3,3y = 0. IJh = 0 for y, = t% (4.5) 

(2) 
ah =ai3k3” 3k,3Y 

The solution of problem (4.5), (4.6) may be found in the form 

J2) 
3k,3y = Ck(t)y,. i.e. U(;j = c,(t)+ +Bk 

In fact, relation (4.6) reduces to 43 = 0. Substituting expression (4.7) into (4.5) we obtain 

63 =‘%3k3CkYs + ri3k3CkYs -Y+3aU(3q)~flr - 

- J’s ri3pau(3q)orxpx = Y 3 \(ai3k3)(C - (ai3k3) -’ (~i3fluu(3q)orxpx) + 

+ (ri3k3)(C - (ri3k3)-‘(ri3P”U’3q)aXPX)I = 0 (4.8) 

In the general case the operator equation (4.8) (differential, if the material is visco-elastic) has a solution 
given by operators that are non-local with respect to time, which depend on the curvatures {u$(&}. 

From a comparison of Eqs (4.8) and (3.4) it follows that all the conclusions of Sec. 3 hold with respect to 
(4.8). In particular, when an axial extension is replaced by cylindrical bending in the foregoing example, we 
obtain the same memory parameters for the plate. 

Therefore, in the general case, for plates of constant thickness fabricated from homogeneous materials, the 
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governing equations for the plate and those for the material from which the plate is fabricated are of different 
types. 

The effects discovered also occur in thin rods and in thin-walled structures [S-7]. 
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